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The role of electron density in magnetic turbulence
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Eduardo Fernandez
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~Received 26 July 2000; accepted 13 February 2001!

Inertial range energy transfer, decorrelation, and energy spectra are studied analytically and
numerically for strongly anisotropic magnetohydrodynamic~MHD! turbulence augmented by
electron density evolution. The model is relevant to interstellar turbulence and magnetic turbulence
in fusion devices. For long wavelengths~compared to the ion gyroradius!, magnetic and kinetic
energies are equipartitioned through interactions that decorrelate on the Alfve´nic time scale. Internal
energy transfer is governed by advection and decorrelates on the eddy turnover time scale. For short
wavelengths, the roles of internal and kinetic energy reverse. Magnetic and internal energies are
equipartitioned by the kinetic Alfve´n interaction, while kinetic energy evolves under a decoupled
fluid straining interaction. The spectral indices for magnetic, kinetic, and internal energies are23/2,
23/2, and27/4 for long wavelengths, and22, 25/3, and22 for short wavelengths. ©2001
American Institute of Physics.@DOI: 10.1063/1.1362531#
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I. INTRODUCTION

In long wavelength hydromagnetic turbulence, electr
density fluctuations are advected passively, affecting nei
magnetic field nor flow. At shorter wavelengths, approach
and extending beyond the scale of the ion gyroradius,
electron density becomes dynamically active.1 It feeds back
on magnetic fluctuations through the electron pressure, w
direct forcing of density fluctuations by the magnetic fie
through parallel compression of field-aligned current b
comes stronger than the advection of electron density by
flow. In the spectrum of electron density fluctuations in t
warm, diffuse component of the local interstellar mediu
~ISM! these effects are confined to at best two decades
the inner scale.1 This represents only the very smallest o
served scales of a spectrum that encompasses ove
decades.2 Notwithstanding, recent measurements of angu
broadening of extragalactic radio sources indicates tha
these scales the spectrum fall off steepens, consistent
the presence of new effects.3 Short wavelength magnetotu
bulence is relevant to the high frequency magnetic spect
measured in the Madison Symmetric Torus~MST!.4 The
spectrum also represents scales that are somewhat large
the ion gyroradius, and, like the ISM spectrum, it decays a
rate that is steeper than the23/2 power of magnetohydrody
namics ~MHD!.5 Moreover, recent measurements sugg
that electron density fluctuations are characterized not by
advective response, but by a response that is compressio6

We examine these effects by considering a model
hydromagnetic turbulence that incorporates density evolu
and is valid in long and short wavelength regimes. Thou
not essential to the physics considered here, the mode
cludes drifts associated with mean gradients in current
density and is therefore referred to as the drift-Alfve´n model.
We consider inertial range dynamics in spectra driven at
largest scale of the system. The role of electron densit
2701070-664X/2001/8(6)/2707/15/$18.00
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probed by choosing the driving scale and the smaller sc
of the spectrum to lie in long or short wavelength limits,
to span both. Prior studies1,7 have been limited to the long
wavelength regime, and established that the density beco
increasingly passive as scales become larger. The cou
propagation of smaller scale Alfve´nic disturbances along
larger scale fields~Alfvén effect!8 was found to govern the
decorrelation between fluctuations of the magnetic field a
flow, even when the turbulence is maximally anisotropic, i.e.,
when the wave number along the mean magnetic field g
to zero. This is because the turbulent magnetic field, a
multiscaled fluctuation, has smaller scale components tha
not align with the mean field~which is dominated by the
largest scales!, or even with the local magnetic field in som
sizable subregion of the full domain.~The latter is dominated
by the largest scales in the subregion. The field on a sma
scale points in some other direction.! While the propagation
of Alfvén waves along the mean or local magnetic field c
be suppressed by the vanishing of the wave number in ei
of those directions, perpendicular motions support the pro
gation of Alfvénic disturbances along the Fourier comp
nents of the field at smaller scale. All such disturbances c
tribute to the Alfvén effect.

The situation is illustrated in Fig. 1, which shows a fie
line that on scales less than a wavelength of the undula
differs locally from the mean field direction, which is vert
cal in the figure. A fluctuation anisotropy that eliminat
Alfvénic propagation with respect to the local field can
represented as phase fronts parallel to the local field. O
smaller scale than that of the local field, the field points
other directions, represented as an undulation superimp
on the local field. This field crosses phase fronts and t
supports Alfvénic motion on yet a smaller scale. The figu
at best represents 2 decades of spatial variation. In a s
trum like that of interstellar turbulence, with spatial variatio
7 © 2001 American Institute of Physics
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over 12 decades, these arguments can be applied in fr
fashion to ever smaller scales making it impossible to esc
Alfvénic decorrelation. Fluctuations deep in the inert
range can decorrelate faster via Alfve´nic propagation along
field components whose scales are somewhat smaller
the scales of the mean or local field than they can from e
straining, even though the field supporting the Alfve´nic dis-
turbance is weaker than the mean or local field. These s
ments are valid with respect to either the mean or local fie
provided the turbulence is space filling and broadband,
the field is multiscaled everywhere.

The role of Alfvénic decorrelation in anisotropic turbu
lence has been quantified by measuring the long-wavele
turbulent response in simulations of the drift-Alfve´n model.7

The model is based on reduced MHD,9 which can be derived
as a expansion about the local magnetic field in some re
of interest. At the point of expansion the local field is equ
to the mean field defined by an average over that region
the simulations, Alfve´nic propagation along the local mag
netic field is wholly removed by setting the parallel wa
number to zero, yet the decorrelation rate is measured t
Alfvénic. In contrast, the turbulent response of the den
decays on the slower eddy straining time scale. The com
nation of Alfvénic decorrelation in the magnetic and flo
evolution and fluid straining decorrelation in the density ev
lution leads to a spectral index for the electron density
27/4, in close agreement with the observed spectrum
interstellar turbulence. These effects are evident in a stat
cal closure of the model equations, and are verified in
merical simulation. They contradict the postulate of Go
reich and Sridhar,10 who posit that for fluctuations whos
anisotropy is sufficient to make the Alfve´nic decorrelation
rate of the mean magnetic field equal to or smaller than
fluid straining rate, the fluid straining rate governs all turb
lent decorrelations. They also contradict a broader interp
tation of anisotropy that invokes the local field.11 We empha-
size that the reduced description used in reaching
conclusions cannot address the nature of the anisotr

FIG. 1. Representation of a multiscaled turbulent magnetic field line w
fluctuation phase fronts that have zero wave number along the local field
smaller scale the field crosses these phase fronts. Fluctuations on
smaller scale can propagate along this field as Alfve´n waves.
Downloaded 28 Oct 2011 to 128.104.165.246. Redistribution subject to AIP 
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Rather it shows that for the strongest possible anisotropy,
Alfvén effect is present. We also emphasize that at the h
ristic level of Fig. 1 the Alfve´n effect is present, independen
of the reduced MHD approximation used to construct
simulation model. The numerical measurement of a 5/3 sp
tral index in recent three-dimensional~3D! MHD
simulations12 ~implying the Alfvénic decorrelation is unim-
portant! may be an artifact of limited resolution. Noting tha
the turbulence was reported to be ‘‘practically isotropic,’’12

the simplest explanation of the 5/3 exponent is that th
were insufficient modes to resolve a scale where Alfv´n
waves propagating on a larger scale field fluctuation
achieve an Alfve´n frequency much bigger than an eddy tur
over rate.

In this paper, nonlinear interactions of the drift-Alfve´n
model are analyzed using strong-turbulence statistical
sure theory and computation. It is not possible to consi
every aspect of the model in a single work. We focus here
nonlinear properties and leave other effects, including di
pation, diamagnetic drifts, and kinetic effects, to future co
sideration. These are important in interstellar turbulence
the high frequency magnetic turbulence of MST. Hence t
is a study of basic nonlinear properties more than a stud
either application. Closure theory provides the characteri
temporal responses of the dominant nonlinear interacti
and their associated eigenmodes. This analysis identifies
dominant coupling at long wavelengths as Alfve´nic, and in-
dicates that there is an equipartition of kinetic and magn
energies, with internal energy decoupled from energy
changes between fields. At short wavelengths, an interac
between the magnetic field and density dominates
Alfvénic coupling. The new interaction resides in the nonl
ear coupling of magnetic field and density through the fie
aligned pressure force and parallel compression of fie
aligned current. The compressional coupling of electr
density and magnetic field produces an Alfve´n-like oscilla-
tion that propagates along the field and is the fluid realizat
of a fluctuation known as the kinetic Alfve´n wave. In turbu-
lence, kinetic Alfvén disturbances propagate as nonline
wave packets along the perturbed field associated with e
scale in the spectrum. In the kinetic Alfve´n disturbance elec-
tron pressure fluctuations replace the flow in stretching m
netic field lines. The result is an equipartition of magne
and internal energy, with flow assuming a subdominant r
in the dynamics. As apparent from simulations, equipartit
of magnetic and internal energy occurs even when the
tem is driven solely through the magnetic field and the d
sity is subjected to no external forcing. In such cases
kinetic energy is small compared to the magnetic and in
nal energies. When all three fields are externally forc
Kolmogorov-type analysis of the closure equations revea
similarity range at short wavelength with equipartition
magnetic and internal energies.

In the short wavelength regime, the spectral index rec
ered for the power spectrum of electron density is22. For
the kinetic energy spectrum, the fluid straining of vortici
by the flow dominates the Alfve´nic interaction, leading to a
spectral index of25/3. The spectral index for the powe
spectrum of density is obviously very close to the value

h
At
t a
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21.9 extracted from the measurements near the inner s
of angular broadening of extragalactic radio sources.3 The
agreement may be fortuitous and should be viewed with c
tion. The present theory does not consider dissipation, wh
is also a potential explanation for the steepening of the
served spectrum. Furthermore, thek22 density fluctuation
power spectrum is an asymptotic short wavelength spect
valid when wavelengths become smaller than the gyrorad
Before entering this regime there is complicated transit
subrange whose physics is not yet clear.

This paper is organized as follows. In Sec. II the mo
is introduced, and its properties are briefly discussed. F
its basic properties, a heuristic derivation of the spectra
presented. Section III details the closure calculation nec
sary to justify the assumptions of the heuristic spectrum d
vation. Section IV is devoted to similarity range spectra. T
closure equations are analyzed to establish dominant
ances through consistency checks, and power law spe
indices are obtained for the kinetic, magnetic, and inter
energies in both the long and short wavelength limits. T
paper is primarily analytical. However, Sec. V briefly pr
sents results of numerical solutions that illustrate the ba
physics described in the earlier sections. Section VI conta
the conclusions.

II. MODEL EQUATIONS

The drift-Alfvén model links MHD with electron density
evolution specified through the continuity equation. T
electron pressure in Ohm’s law couples the density to
magnetic field evolution and the compression of elect
current along the mean magnetic field couples the magn
field to the density evolution. Formal derivations have be
given by Hazeltine13 and Rahman and Weiland.14 It is pos-
sible to approximate the system under reduced MHD ord
ing, appropriate to low beta and a spectrum in which va
tions along the local magnetic field are weaker than th
across the field. While beta, the ratio of plasma pressur
magnetic field pressure, is order unity in the warm diffu
ISM, the fluctuations are generally represented as sh
Alfvén disturbances, which do not involve finite beta. R
duced MHD ordering is based on a coordinate syst
aligned with the local field. The mean field and local fiel
are equal at the origin, which is an arbitrary point on the fi
line in some region of interest. The flow and the magne
field can be expressed in terms of scalar stream funct
corresponding to the electrostatic potential and the com
nent of the magnetic vector potential along the mean m
netic field. The nonlinearities describe the interaction of flu
tuations whose wave numbers lie in the plane perpendic
to the mean magnetic field. The model equations are

]ĉ

]t
1“ if̂5h Ĵ1“ in̂1

Cs

VA
n0

21
“ĉ3z•¹n0 , ~1!

]

]t
“'

2 f̂2“f̂3z•““'
2 f̂52“ iĴ, ~2!

]n̂

]t
2“f̂3z•“n̂1“ iĴ2

Cs

VA
n0

21
“f̂3z•¹n050, ~3!
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where

“ i5
]

]z
1“ĉ3z•“, ~4!

Ĵ5“'
2 ĉ, ~5!

and ĉ5(Cs /c)eAz /Te is the normalized component of th
electromagnetic vector potential parallel to the mean m
netic field,f̂5(Cs /VA)ef/Te is the normalized electrostati
potential, n̂5(Cs /VA)ñ/n0 is the normalized electron den
sity fluctuation,h5(c2/4pVArs)hsp is the normalized resis
tivity with hsp the Spitzer resistivity,n0 is an inhomoge-
neous mean density, andz is the direction of the mean
magnetic field. In the above equations, spatial scales are
malized tors5Cs /V i ~the ion gyroradius evaluated at th
electron temperature!, time is normalized to the Alfve´n time
tA5rs /VA , Cs5(Te /mi)

1/2 is the ion acoustic velocity,
VA5B/(4pmin0)1/2 is the Alfvén velocity, and V i

5eB/mic is the ion gyrofrequency. We have selected a n
malization for which all nonlinearities have equal streng
when the normalized field amplitudes are equal. The ord
ing scheme leading to Eqs.~1!–~5! makes no assumption
about fluctuation scale, i.e., the model applies to scales b
larger and smaller than the gyroradius.

Equations~1!–~3! readily reduce to other familiar sys
tems. If the electron density is eliminated, Eqs.~1! and ~2!
become reduced MHD~RMHD!.9 If the magnetic field fluc-
tuations are negligible, and the density satisfies the Bo
mann relation (n̂5f̂), Eqs.~2! and ~3! can be combined to
yield the Hasegawa–Mima equation for drift wav
turbulence.15 If the electrostatic potential becomes neg
gible, Eqs. ~1! and ~3! become the compressible electro
magnetoturbulence~CEMT! model.16 The dynamics of the
full system is naturally attracted to the dynamics of the
reduced systems under certain circumstances detailed be
In particular, we consider the limit in which the diamagne
frequency is smaller than the Alfve´n frequency. Then, the
reductions to RMHD~with density evolving as a passivel
advected scalar! and CEMT~with flow as a decoupled self
advected field! emerge in long and short wavelength limi
under forcing that preferentially excites the magnetic fie
fluctuations.

The ordering scheme used to derive Eqs.~1!–~5! as-
sumes that variations along the local field are weaker t
those across it. This restricts nonlinear coupling to directio
across the field, and hence the spectrum is intrinsically
isotropic. We impose a further anisotropy constraint by s
ting to zero the derivative with respect toz. This is tanta-
mount to stipulating, as did Goldreich and Sridhar,10 that in a
three-dimensional~3D! spectrum the opposing propagatio
of Alfvénic disturbances along the mean magnetic field p
no role in the turbulent decorrelation. Consequently, our
sumptions approximate 3D turbulence lying within the cri
cal balance envelope of Ref. 10, i.e.,kz&k'

2/3L21/3, whereL
is the outer scale. Note however, that the Alfve´n effect can in
no way be considered as removed from Eqs.~1!–~5!, because
there remains the fluctuating part of the magnetic fie
which is perpendicular to the mean magnetic field. Alfve´nic
license or copyright; see http://pop.aip.org/about/rights_and_permissions
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disturbances propagate on these field components as wig
on wiggles, competing with the fluid straining interaction
setting the turbulent decorrelation rate. Although the ani
tropic model used herein is consistent with the postulate
Ref. 10, the model, and the conclusions that follow the
from, may not apply uniformly to 3D interstellar turbulenc
For example, interstellar turbulence may be intermitte
having regions where the magnetic field is coherent
characterized by a single scale or narrow range of scales
the local field in such regions, the nonlinear Alfve´n effect of
a multiscaled field discussed above is eliminated. Howe
such regions alone cannot reproduce the broad spectrum
there must be other regions where the field is multiscaled
the model of Eqs.~1!–~5! is applicable.

In the competition between Alfve´nic and eddy straining
effects, the Alfve´nic disturbances have the advantage of n
locality. At any given inertial range wave numberk, the most
rapid Alfvénic decorrelation is produced by fluctuation
propagating in opposite directions along a large scale fi
fluctuation. In contrast, the most rapid fluid straining dec
relation involves the interaction of eddies with scales co
parable tok. If the flow and magnetic fields are equipar
tioned atk, and the spectrum peaks at smallk, then the fluid
straining decorrelation is slower than the Alfve´nic decorrela-
tion because the large scale field on which the fluctuati
propagate is larger than the local flow. To examine the ch
acter of the fastest nonlocal Alfve´nic interaction in expres-
sions for the turbulent inertial range fields, it is advantage
to separate it from weaker, more local interactions. Fou
transforming Eqs.~1!–~3! and introducing this separatio
yields

]ĉk

]t
2k03z•kĉk0

f̂k2k0
1k03z•kĉk0

n̂k2k0
2 ikyĉk

Cs

VALn

5 (
k8Þk0

~k83z•k!@ĉk8f̂k2k82ĉkn̂k2k8#5Nc , ~6!

~k2k0!2
]f̂k2k0

]t
1k03z•kĉ2k0

ĉkk
2

52
1

2 (
k8

~k83z•k!@~k2k8!22k82#f̂k•f̂k2k8

1
1

2 (
k8Þk0

~k83z•k!@~k2k8!22k82#ĉk8ĉk2k8[Nf ,

~7!

]n̂k2k0

]t
2k03z•kĉ2k0

ĉkk
22 i ~ky2k0y!f̂k2k0

Cs

VALn

5(
k8

~k83z•k!f̂k8n̂k2k81
1

2 (
k8Þk0

~k83z•k!

3@~k2k8!22k82#ĉk8ĉk2k8[Nn . ~8!

In writing Eqs. ~6!–~8!, k0 is understood to represent not
single wave number but the wave numbers of a restric
band corresponding to the most energetic modes near
Downloaded 28 Oct 2011 to 128.104.165.246. Redistribution subject to AIP 
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outer scale of the magnetic fluctuation spectrum. The eq
tions are written to isolate the interaction of nonlocal triple
involving modes atk, k0 , andk2k0 with k0!k. To better
see the wave number scalings of these nonlocal Alfve´nic
couplings, we express Eqs.~6!–~8! terms of the fieldsuBku
5Bk5kucku and uVku5Vk5kfk . The equations then tak
the heuristic form

]Bk

]t
2gAVk1gAknk5v* Bk1kNc , ~9!

]Vk

]t
1gABk5

Nf

k
, ~10!

]nk

]t
2gAkBk5v*

Bk

k
1Nn , ~11!

wheregA5uk03z•kĉk0
u andv* 5kyCs /VALn . The nonlo-

cal Alfvénic interactions have been grouped on the left ha
side; all other interactions are on the right hand side.

From these equations we readily deduce the follow
general behavior:

~1! At long wavelengths~ki,k!1, whereki is the driving
scale!, the off-diagonal coupling ofVk andBk ~with cou-
pling strengthgA! is the dominant nonlocal interaction
This is the standard Alfve´nic interaction of MHD. The
off-diagonal character yields counter-propagati
Alfvénic disturbances with equipartitioned magnetic a
flow fields. The frequency of propagation isgA'kVA

'kk0ck0
.

~2! At short wavelengths (k.ki@1), the off-diagonal cou-
pling of Bk andnk ~with coupling strengthugAuk! is the
dominant nonlocal interaction. This is the kinetic Alfve´n
disturbance. It is similar to an Alfve´n wave because the
field coupling is off-diagonal, leading to counter prop
gating disturbances along the large scale fieldk0ck0

,
with equipartitioned density and magnetic field. The fr
quency of propagation isgAk'k2VA .

~3! In both limits, both types of the interactions occur, b
the additional factor ofk in the kinetic Alfvén coupling
makes it dominant in the short wavelength regime a
subdominant in the long wavelength regime.

~4! Provided the Alfve´nic disturbances govern the turbule
decorrelation, the spectrum in the long wavelength
gime is the Iroshnikov–Kraichnan spectrum.8,17 A heu-
ristic derivation is easily obtained from the long wav
length spectrum balances that are formed by casting E
~9! and~10! as energy evolution equations and invokin
a Kolmogorov balance between a constant energy di
pation ratee and the dominant nonlinearity. For mag
netic energyB2, Eq. ~9! yields

e5B
dB

dt
>BkNc>kB2V, ~12!

while for kinetic energyV2, Eq. ~10! yields

e5V
dV

dt
>

VNf

k
>kB2V, ~13!

where all fields are taken to lie in the vicinity of th
inertial range wave numberk. We substitute singly for
license or copyright; see http://pop.aip.org/about/rights_and_permissions
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any one member of the tripletB2V from an inversion of
the appropriate amplitude equation and assume equ
tition of V andB. For example, the steady state inversi
of B is specified from Eq.~10! as

B'
Nf

kgA
'

kB2

gA
. ~14!

Note that, providedgA evolves slowly relative toNf , B
is driven by the turbulent interaction of the flow equ
tion. The energy balances then becomee5k2B4/gA

5kB4/VA . The spectra of the equipartitioned magne
and flow fields are thus

EM~k!5EK~k!5e1/2VA
1/2 1

k3/2, ~15!

whereEM(k)[Bk
2/k andEK(k)[Vk

2/k.
~5! A similar derivation produces the short wavelength sp

tra. The spectrum balances associated with the domi
kinetic-Alfvén nonlinearities are

e5B
dB

dt
>BkNc>k2B2n, ~16!

e5n
dn

dt
>nNn>k2B2n. ~17!

We substitute singly for any one member of the tripletB2n
using the appropriate amplitude equation and assume e
partition of B and n. For the short wavelength limit, th
steady state inversion ofB is specified from Eq.~11! as

B'
Nn

gAk
'

k2B2

gAk
. ~18!

The energy balances then becomee5k4B4/gAk
5k2B4/VA . The spectra of the equipartitioned magnetic a
density fields thus satisfy

EM~k!5EI~k!5e1/2VA
1/2k22, ~19!

whereEI[nk
2/k. The slightly steeper decay law is the co

sequence of the additional factor ofk in the kinetic-Alfvén
coupling.

The heuristic derivations in points~4! and~5! above rely
on an inversion of the amplitude equations, given in E
~14! and ~18!, to determine the correlation time of the no
linear interactions. A similar step also occurs in more form
closure calculations, like that of the next section. In su
inversions it is essential to account for the fact that dist
bances at wave numberk decorrelate on a time scalekVA

that is short relative to the time scale of the long wavelen
field k0ĉk0

on which the disturbances propagate. Because
long wavelength field forms a quasistationary background
the time scale of inertial range correlations, the off-diago
character of the nonlocal Alfve´nic coupling effectively mixes
the turbulent sources@so thatB is driven byNf or Nn , as in
Eq. ~14! or ~18!#. It is difficult to account for this mixing
unless the time scale separation is explicitly treated by se
rating the local and nonlocal interactions as done in E
~6!–~8!. The time scale separation holds provided the sp
trum peaks at long wavelength.
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The heuristic derivations above rely on the assumpt
that the nonlocal Alfve´nic interactions propagating along th
long wavelength magnetic field fluctuations dominate
decorrelation of the triplet correlations governing spect
transfer. This assumption is tested and validated by syst
atically performing a statistical closure calculation for stro
turbulence, and assessing the relative role of the Alfve´nic
and fluid straining interactions.

III. CLOSURE CALCULATION

We apply the eddy damped quasinormal Markovi
~EDQNM! closure procedure18 to the basic evolution equa
tions in wave number space. The closure allows identifi
tion of the correlations and couplings that drive spect
transfer in a system complicated by an active density
sponse that becomes important at small wavelength. It
sorts out the interplay between the rapid Alfve´nic and the
slow fluid straining time scales. Which time scale gover
turbulent decorrelation has been a source of confusion e
in the simpler situation where density is passive. The ba
equations are

]ĉk

]t
2vAf̂k1vAn̂k2 iv* ĉk5Sc , ~20!

]k2f̂k

]t
1gfk2f̂k1v̂Ak2ĉk5Sf , ~21!

]n̂k

]t
1gnn̂k2v̂Ak2ĉk2 iv* f̂k5Sn , ~22!

where

Sc5(
k8

Ak8,k@ĉk8~f̂k2k82n̂k2k8!2ĉk2k8~f̂k82n̂k8!#,

~23!

Sf5(
k8

Ak8,k@~k2k8!22k82#~ ĉk8ĉk2k82f̂k8f̂k2k8!, ~24!

Sn52(
k8

Ak8,k$f̂k8n̂k2k82n̂k8f̂k2k8

1@~k2k8!22k82#ĉk8ĉk2k8%, ~25!

andAk8,k5(1/2)(k83z•k). The quantitiesvA , v̂A , gn , and
gf are complex-valued, amplitude dependent turbulent de
rrelation rates whose form is to be derived self-consisten
from the closure calculation. The basic structure, withvA

andv̂A as off-diagonal coupling coefficients, is motivated b
the nonlocal Alfvénic decorrelation discussed in the prece
ing section. Those considerations lead to the prediction
vA'v̂A'gA'kBk0

. The two Alfvénic decorrelation rates
vA andv̂A allow for possible differences in the responses
the vorticity and density relative to that of the magnetic p
tential. The ratesgf andgn are fluid straining decorrelation
associated with the advection of vorticity and density by
flow. These are treated in the usual manner as diagonal
license or copyright; see http://pop.aip.org/about/rights_and_permissions
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fusivities. Dimensional considerations and the locality of t
fluid straining decorrelation8 lead to a prediction thatgf

'gn'kVk .
To identify and extract the time scales and couplings

the fundamental interactions in Eqs.~20!–~22! we consider
the eigenmodes of the left hand side of these equations.
anticipate that the decorrelation ratesvA , v̂A , gn , andgf

are spectrum averaged quantities that evolve in a statio
state on a slower time scale than the mode amplitudesĉk ,
f̂k , and n̂k . Hence the rates can be treated as constant
the faster time scale, even though they are functions of
plitude. For a normal mode responsex̂k5x0 exp(2ivt),
wherex̂k is any of the fluctuation amplitudes, the charact
istic equation of the left hand side of Eqs.~20!–~22! is

v32 iv2~gn1gf2 iv* !2v@vAv̂A~11k2!1gngf

2 iv* ~gn1gf!#2 ivAv̂A~gn1gfk2!

2v* ~vAv̂A1gngf!50. ~26!

Assuming an orderingvA;v̂A@gn;gf;v* , the three
roots are given by

v1,256@vAv̂A~11k2!#1/21O~gn!, ~27!

v352 i @gn1gfk2#2v* /~11k2!1O~gn
2/vA!. ~28!

The paired rootsv1,2 represent the Alfve´nic interaction, cor-
responding to disturbances propagating in opposite di
tions along the large scale magnetic field fluctuation. F
short wavelengths this branch clearly remains Alfve´nic, but
the eigenfrequency changes fromvA to kvA . The third root
v3 represents a decorrelation process tied to the fluid str
ing or eddy turnover time scale. This branch is designate
the arbiter of turbulent decorrelation rate in theories wh
spectral index is given by 5/3.10 In actuality, the spectra
transfer rates are a mixture of the three eigenmodes as
ated with the eigenfrequenciesv1 , v2 , andv3 . Only if the
mixture has a negligible contribution from the Alfve´nic
branches will the fluid straining rate set the decorrelat
rate. Measurement of this mixture in long wavelength sim
lations has established that the nonlinearities of the magn
and electrostatic potential equations are dominated by
Alfvénic eigenmodes.7 Consequently the Alfve´nic decorrela-
tion dominates the spectral transfer.1

The eigenvectors corresponding to the Alfve´nic roots
v1,2 of Eq. ~27! are

ĉk5ĉ0 , ~29!

f̂k52 i
vA

v1,2
ĉO57 i F v̂A

vA~11k2!G
1/2

ĉO , ~30!

n̂k5 i
v̂Ak2

v1,2
ĉO56 i F v̂A

vA~11k2!G
1/2

k2ĉO . ~31!

For k!1 these eigenvectors have comparable amplitude
ĉk andf̂k ~and henceB andV!, and reflect the equipartition
of Alfvénic turbulence. The densityn̂k is smaller thanĉk and
f̂k by a factork2 ~smaller thanB andV by a factork!. For
k@1, the eigenmode partition changes noticeably. The d
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sity is proportional tokĉO and is therefore in equipartition
with the magnetic field. The potentialf̂k is smaller thanĉk

by the factork21 ~V is smaller thanB by the same factor!. It
is clear that when the frequency of Alfve´nic interactions
changes fromvA to vAk, the dominant coupling change
from one in which the energy exchange drives equipartit
of B and V to one in which theB and n become equiparti-
tioned. This reflects the change from the shear Alfve´n inter-
action at long wavelength to the kinetic Alfve´n interaction at
short wavelength. The eigenvector of the fluid straini
branch is most simply illustrated forv* negligible:

ĉk5ĉO , ~32!

f̂k5
v̂A

iv32gf
ĉO5

v̂A~11k2!

gn2gf
ĉO , ~33!

n̂k5
2v̂Ak2

iv32gn
ĉO5

v̂A~11k2!

gn2gf
ĉO . ~34!

For this branchn̂k and f̂k are equal and larger thanĉk . If
fluid straining were the dominant nonlinear decorrelation,
amplitudes could be expected to partition according to E
~32!–~34!. Indeed this is the characteristic partition of ele
trostatic drift wave turbulence.

We proceed with the closure, forming spectrum ene
equations from Eqs.~20!–~22! by multiplying each equation
respectively, byk2ĉ2k , f̂2k , andn̂2k , and taking the com-
plex conjugate,

]k2uĉku2

]t
22k2 Re@vA^f̂kĉ2k&2vA^n̂kĉ2k&#

52k2 Re@^Scĉ2k&#, ~35!

]k2uf̂ku2

]t
22 Re@2gfk2uf̂ku22v̂Ak2^ĉkf̂2k&#

52 Re@^Sff̂2k&#, ~36!

]un̂ku2

]t
22 Re@2gnun̂ku21v̂Ak2^ĉkn̂2k&#52 Re@^Snn̂2k&#.

~37!

To determine the lifetime of the source correlations mak
up the last terms of Eqs.~35!–~37!, the turbulent evolution
equation for each fluctuation appearing in those correlati
must be iteratively solved. Anticipating the iteration, th
source correlations take the form

^Scĉ2k&5(
k8

Ak8,k$2^ĉk8~f̂k2k8
~2!

2n̂k2k8
~2!

!ĉ2k22ĉk2k8
~2!

3~f̂k82n̂k8!ĉ2k&1@^ĉk8~f̂k2k82n̂k2k8!

2ĉk2k8~f̂k82n̂k8!#ĉ2k
~2!&%, ~38!
license or copyright; see http://pop.aip.org/about/rights_and_permissions
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^Sff̂2k&5(
k8

Ak8,k@~k2k8!22k82#$2^ĉk8ĉk2k8
~2! f̂2k&

22^f̂k8f̂k2k8
~2! f̂2k&

1@^ĉk8ĉk2k82f̂k2k8f̂k8#f̂2k
~2!&%, ~39!

^Snn̂2k&52(
k8

Ak8,k$2^@f̂k8n̂k2k8
~2!

2n̂k8f̂k2k8
~2!

1@~k2k8!22k82#ĉk8ĉk2k8
~2!

#n̂2k&1^@f̂k8n̂k2k8

2f̂k2k8n̂k8#n̂2k
~2!&

1@~k2k8!22k82#^ĉk8ĉk2k8n̂2k
~2!&%, ~40!

where the fluctuations with the superscript~2! are those for
which inversions of the amplitude equations, Eqs.~20!–~22!,
are substituted. The inversions are performed formally, w
the right hand sides treated as sources. Moreover, the Fo
modes contributing to each source in Eqs.~23!–~25! are re-
stricted to the directly interacting triplets which close four
order correlations as products of second order correlati
Thus the fieldsĉk2k8

(2) , f̂k2k8
(2) , andn̂k2k8

(2) satisfy

]ĉk2k8
~2!

]t
2vA9 f̂k2k8

~2!
1vA9 n̂k2k8

~2!
2 iv

*
9 ĉk2k8

~2!

5Sc
~2!~k2k8!, ~41!
b

n

-
s

ir

rm
al
ar
s
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~k2k8!2
]f̂k2k8

~2!

]t
1gf9 ~k2k8!2f̂k2k81v̂A9 ~k2k8!2ĉk2k8

5Sf
~2!~k2k8!, ~42!

]n̂k2k8
~2!

]t
1gn9n̂k2k8

~2!
2v̂A9 ~k2k8!2ĉk2k8

~2!
2 iv

*
9 f̂k2k8

~2!

5Sn
~2!~k2k8!, ~43!

where the superscript9 denotes the evaluation of functions o
wave number atk2k8, and

Sc
~2!~k2k8!52Ak8,k@ĉk~f̂2k82n̂2k8!2ĉ2k8~f̂k2n̂k!#,

~44!

Sf
~2!~k2k8!52Ak8,k~k822k2!@ĉkĉ2k82f̂kf̂2k8#, ~45!

Sn
~2!~k2k8!522Ak8,k@f̂kn̂2k82f̂2k8n̂k

1~k822k2!ĉ2k8ĉk#. ~46!

Consistent with the Markovian assumption of EDQN
we seek a steady state inversion of Eqs.~41!–~43!. This is
valid provided the spectrum evolves on a time scale tha
long compared to the correlation times of the turbulent flu
tuations. Dropping the time derivatives, Eqs.~41!–~43! yield
ĉk2k8
~2!

5
gn9Sf

~2!~k2k8!2@k2k8#2gf9 Sn
~2!~k2k8!

~k2k8!2v̂A9 @gn91~k2k8!2gf9 #
1O~gn /vA

2 !, ~47!

f̂k2k8
~2!

5
Sf

~2!~k2k8!1Sn
~2!~k2k8!2~gn9/vA9 !Sc

~2!~k2k8!

@gn91~k2k8!2gf9 #
1O~gn /vA

2 !, ~48!

n̂k2k8
~2!

5
Sf

~2!~k2k8!1Sn
~2!~k2k8!1~gn9/vA9 !@k2k8#2Sc

~2!~k2k8!

@gn91~k2k8!2gf9 #
1O~gn /vA

2 !, ~49!
n,
e

.

.

ich
ing

b-
where an expansion based onvA@gn;gf@v* has been
carried out and only the lowest two orders@O(gn

21) and
O(vA

21)# have been retained. These solutions reflect the
sic structure of drift-Alfvén turbulence. The Alfve´nic inter-
action is off-diagonal, whereas the fluid straining interactio
are diagonal. Consequently the sourcesSf and Sn are
grouped in Eqs.~47!–~49!. The driving of magnetic fluctua
tionsc (2) by Sf andSn is off-diagonal; hence it decorrelate
on the Alfvénic time scale. The fluctuationsn(2) andf (2) are
driven bySf andSn through a diagonal coupling; hence the
decorrelation is on the fluid straining time scale. BecauseSf

and Sn have magnetic components@see Eqs.~44!–~46!#,
these must cancel out of the diagonal fluid straining te
indicating thatSf andSn appear in the density and potenti
equations as a sum. Additionally, potential and density
coupled off-diagonally by the magnetic interaction, so the
a-

s

,

e
e

fluctuations are driven bySc with an Alfvénic decorrelation.
The sourceSc , which is diagonal in the magnetic equatio
can only enter through a coupling on the fluid straining tim
scale. Therefore, there is noSc contribution in the magnetic
equation. Finally,n(2) and f (2) are equal to lowest order
This means thatn(2) andf (2) cancel to lowest order in Eq
~38! for ^Scc2k&. Since the decorrelation ofc (2) takes place
on the fast time scale only, the magnetic equation, of wh
^Scc2k& is the source, has no decay on the fluid strain
time scale. This feature is readily apparent in Eq.~50! below.

The final form of the energy evolution equations are o
tained by substituting Eqs.~47!–~49! into Eqs. ~38!–~40!,

along with the corresponding inversions ofĉ2k
(2) , f̂2k

(2) , and
n̂2k

(2) , which have the same form as Eqs.~47!–~49! with
k2k8→2k. The sources Sc

(2)(2k), Sf
(2)(2k), and

Sn
(2)(2k) are given by Eqs.~44!–~46!, with k8→k2k8 and
license or copyright; see http://pop.aip.org/about/rights_and_permissions
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k→2k8. Under the above substitutions, the source corre
tions given by Eqs.~38!–~40! now contain the Alfve´nic and
fluid straining decorrelation terms explicitly displayed
Eqs.~35!–~37!. Consequently the energy evolution equatio
are simply

]k2uĉku2

]t
52k2 Rê Scĉ2k&,

]k2uf̂ku2

]t
52 Rê Sff̂2k&,

]un̂ku2

]t
52 Rê Snn̂2k&.

The right hand side of these equations will be examined
extract those terms having the structure of the Alfve´nic and
fluid straining decorrelation terms in Eqs.~35!–~37!. This
procedure then yields the expressions forvA , v̂A , gn , and
gf . In carrying out the substitutions, we note thatf̂ (2) and
n̂(2) @Eqs. ~48! and ~49!# each contain terms of orderg21,
and a term of ordervA

21 that is proportional toSc
(2) . Nor-

mally the terms of ordervA
21 are higher order and can b

neglected. However in Eq.~38!, the lowest order component
of f̂ (2) and n̂(2) cancel, and the higher order terms must
retained to recover the form of the Alfve´nic decorrelation
vA . This necessitates the inclusion of the higher order te
in Eqs. ~39! and ~40! to maintain energy conservation. Th
energy evolution equations have a rich mathematical st
ture. They are valid in both the long and short wavelen
limits. The exchanges of energy between these equations
pends on six separate correlations representing, respecti
the magnetic, kinetic, and internal spectral energy dens
k2uĉku2, k2uf̂ku2, andun̂ku2, and cross correlationŝĉkf̂2k&,
^ĉkn̂2k&, and^n̂kf̂2k&. These exchanges mix the individu
energy densities in a process that combines the long
scale and short time scale responses of Eqs.~27! and ~28!.
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The energy evolution equations are given by

]k2uĉku2

]t
522 Re(

k8
4Ak8,k

2 k2$GA~k,k8!

2GAf~2k8,2k!1GAn~2k8,2k!

1GAf~2k1k8,k8!2GAn~2k1k8,k8!%,

~50!

]k2uf̂ku2

]t
52 Re(

k8
2Ak8,k

2
@~k2k8!22k82#

3H 2GAf~k,k8!12Gff~k,k8!

1Gff~2k8,k2k8!2Gc~2k8,k2k8!

2
gn~2k!

@gn~2k!1k2gf~2k!#

3GA~2k8,k2k8!J , ~51!

]un̂ku2

]t
52 Re(

k8
2Ak8,k

2 H 2Gf~k,k8!12Gnn~k,k8!

22Gnn~2k8,k2k8!1@~k2k8!22k82#

3F22GAn~k,k8!1Gc~2k8,k2k8!

2
k2gf~2k!

@gn~2k!1k2gf~2k!#
GA~2k8,k2k8!G J ,

~52!

where
GA~k,k8!5S uĉku2@^f̂2k8ĉk8&2^n̂2k8ĉk8&#2uĉk8u
2@^f̂kĉ2k&2^n̂kĉ2k&#

vA9
D , ~53!

GAf~k,k8!5
gn9~k822k2!

v̂A9 ~k2k8!2 S uĉk8u
2^f̂2kĉk&2^f̂2k8ĉk8&uf̂ku2

@gn91~k2k8!2gf9 #
D

1
gf9

v̂A9
S ~k822k2!uĉk8u

2^ĉkf̂2k&1^n̂2k8ĉk8&uf̂ku22^f̂2kn̂k&^ĉk8f̂2k8&

@gn91~k2k8!2gf9 #
D , ~54!

GAn~k,k8!5
gn9

v̂A9

~k822k2!

~k2k8!2 S uĉk8u
2^n̂2kĉk&2^f̂2k8ĉk8&^f̂kn̂2k&

@gn91~k2k8!2gf9 #
D

1
gf9

v̂A9
S ~k822k2!uĉk8u

2^ĉkn̂2k&2^f̂2k8 ,ĉk8&un̂ku21^n̂2kf̂k&^ĉk8n̂2k8&

@gn91~k2k8!2gf9 #
D , ~55!

Gc~2k8,k2k8!5S @~k2k8!22k82#@^f̂2k8ĉk8&^f̂2k1k8ĉk2k8&#12^ĉk2k8n̂2k1k8&^ĉk8f̂2k8&
@gn~2k!1k2gf~2k!#

D , ~56!
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Gf~k,k8!5S 2~k822k2!^f̂kn̂2k&^n̂k8f̂2k8&1^n̂k8f̂2k8&un̂ku22^f̂kn̂2k&un̂k8u
2

@gn91~k2k8!2gf9 #
D , ~57!

Gff~k,k8!5S ~k822k2!uf̂ku2uf̂k8u
21^n̂2k8f̂k8&uf̂ku22^f̂2kn̂k&uf̂k8u

2

@gn91~k2k8!2gf9 #
D , ~58!

Gnn~k,k8!5S ~k822k2!^f̂kn̂2k&uf̂k8u
21^n̂2k8f̂k8&^f̂kn̂2k&2un̂ku2uf̂k8u

2

@gn91~k2k8!2gf9 #
D . ~59!
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Equations ~50!–~52! conserve the total energ

S(k2uĉku21k2uf̂ku21un̂ku2). The magnetic, kinetic, and in
ternal energies are not conserved separately. Conseque
the conservative nature of Eqs.~50!–~52! is manifest when
the three equations are summed and a summation overk is
performed. The terms of the magnetic equation,GA , GAf ,
and GAn , sum to zero only with their counterparts in th
kinetic and internal energy equations. These terms deco
late on the Alfvénic time scale. They only conserve ener
across equations, reflecting the fact that the Alfve´nic interac-
tions convert energy from one form~magnetic, kinetic, inter-
nal! to another. The two termsGff in the kinetic energy
equation add to zero upon summation overk. The same is
also true for the termsGnn in the internal energy equation
These terms decorrelate on the fluid straining time sc
They conserve energy within single equations, reflecting
fact that the fluid straining interaction can transfer ene
spectrally from one scale to another without converting
form of energy. There is one fluid straining term,Gc , that
involves conversion between the kinetic and internal en
gies. The termGf from the density equation vanishes d
rectly upon summation overk. The terms in which the wave
number dependence is indicated by the pair (2k8,k2k8) do
not depend on any correlation or spectral energy densit
the wave numberk. These terms are often referred to
incoherent, or as turbulence production terms. They are
quired for conservative spectral transfer of energy. This t
of term enters in both Alfve´nic and fluid straining terms
indicating that both carry energy from one scale to anoth
However, the Alfve´nic terms do so by converting energ
whereas the fluid straining terms need not produce con
sion. From statistical mechanics considerations, the spe
energy transfer is from large scale to small scale.7

As indicated earlier, spectral transfer in the magne
energy equation is governed solely by Alfve´nic interactions;
no term in this equation decorrelates with fluid straining ra
gn or gf ~the fluid straining factors inGAf andGAn effec-
tively cancel!. For strongly nonlocal triads, the terms inGA

proportional to uĉku2 cancel with corresponding terms i
GAf and GAn , indicating that these terms favor spectr
transfer that is local in wave number space. Indeed lo
energy transfer is favored by Eqs.~50!–~52!. Note that every
term in the magnetic equation depends on at least one c
correlation. This again reflects the fact that magnetic ene
passes from one scale to another only through a conver
to other energy forms. In contrast, there is a term in
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kinetic energy equation that depends solely on the poten
autocorrelation. This term is involved in the spectral trans
of kinetic energy without conversion to other energy form
The kinetic and internal energy evolution equations ha
terms that decay on both the Alfve´nic and fluid straining
time scales. In the kinetic energy equation the Alfve´nic term
dominates except near the inner scale. In the internal en
equation the inverse is true and the fluid straining term do
nates except near the inner scale. The details of these
ances require the forms ofvA , v̂A , gn , and gf and the
spectra. This aspect of the energy evolution equations
therefore be deferred until these quantities are derived.

We now obtain expressions for the decorrelation ra
vA , v̂A , gn , andgf . From Eq.~36!, k2v̂A can be extracted
from Eq. ~51! as the sum of all factors multiplying the co
relation^ĉkf̂2k&. Howeverk2v̂A can also be extracted from
Eq. ~52! as the sum of factors multiplyinĝĉkn̂2k&. Consis-
tency with Eq. ~27! demands that only those factors th
yield the same result contribute to the definition ofv̂A . The
remaining factors contribute to spectral transfer, but not a
coherent decay incorporated on the left hand side of E
~36! and~37!. Likewise,vA is extracted from Eq.~50! as the
sum of factors multiplying the correlation̂ĉ2kf̂k& that also
appear as factors multiplying2^ĉ2kn̂k&. Starting with the
kinetic energy, Eq.~51!, we obtain

v̂Ak25(
k8

4Ak8,k
2

@~k2k8!22k82#~k822k2!uĉk8u
2

v̂A9 ~k2k8!2 .

~60!

This expression is valid in both the long and short wav
length limits. It has the typical structure for decorrelatio
rates in EDQNM and other statistical closures, with the r
appearing recursively as a decorrelation within a spectr
sum on the right hand side of its defining equation. T
nonlocality of the Alfvénic decorrelation allows the approx
mationk8!k, under whichv̂A9'v̂A and

~v̂A!2>2(
k8

~k83z•k!2uĉk8u
2. ~61!

This expression is dimensionally equivalent to the heuris
treatment of the Alfve´nic decorrelation introduced in the pre
ceding section@e.g., in Eqs.~9!–~11!# but differs in three
crucial ways. First, from Eq.~61!, v̂A is imaginary, indicat-
ing that v̂A in fact describes a decorrelation process and
not a coherent oscillation. Second the fluctuation enters
right hand side of Eq.~61! as the absolute value square
license or copyright; see http://pop.aip.org/about/rights_and_permissions
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reflecting the well known fact that oppositely propagati
Alfvénic disturbances are required for decorrelation. Fina
the spectrum sum indicates that the magnetic field on wh
these disturbances propagate is a superposition of Fo
components. Provided the spectral index for the magn
energy is less than21 this sum is dominated by the smalle
wave numbers. The internal energy evolution equation a
yields an expression for2v̂Ak2, obtained as the factor mul
tiplying the correlation̂ ĉkn̂2k&. The expression is identica
to Eq. ~60!.

The Alfvénic decorrelation of the magnetic equatio
2v̂Ak2 is found from factors in Eq.~50! proportional to

^f̂kĉ2k&, which also appear as factors proportional

^n̂kĉ2k&:

2vAk25(
k8

4Ak8
2

,kk
2H uĉk8u

2

vA9
2

gf9^f̂k8n̂2k8&
v̂A9 @gn91~k2k8!2gf9#

J .

~62!

From the expressions forgf andgn derived below, the sec
ond term is negligible. ConsequentlyvA

25v̂A
2 and vA5

6v̂A . For the lower branch,

vA52v̂A5v̂A* , ~63!

which is the form of the Alfve´nic decorrelation in the three
wave interaction model of Eqs.~6!–~8! when k0!k. This
symmetry of the basic equations dictates the choice of
lower branch.

The fluid straining decorrelation rates are obtained i
similar fashion. They apply to diagonal terms, or spec
energy densities, rather than cross correlations. The rategf

is obtained from Eq.~51! as the factor multiplying the kinetic
energy densityk2uf̂ku2,

k2gf5(
k8

4Ak8,k
2

@~k2k8!22k82#

@gn91~k2k8!2gf9 #

3H 2~k822k2!gn9^ĉk8f̂2k8&

~k2k8!2v̂A9
1~k822k2!uf̂k8u

2

1^f̂k8n̂2k8&J . ~64!

The rategn is obtained from Eq.~52! as the factor multiply-
ing the internal energy densityun̂ku2,

gn5(
k8

4Ak8,k
2 uf̂k8u

2

@gn91~k2k8!2gf9 #
. ~65!

These equations must be evaluated jointly in either the l
or short wavelength limit. Fork!1, gfk2!gn , and Eq.~65!
yields

gn5(
k8

4Ak8,k
2 uf̂k8u

2

gn9
, ~66!

with gf;k2gn . Equation ~66! is a typical eddy damping
expression in EDQNM. Because the nonlocal coupling
disparate-sized eddies corresponds to a distortion-
sweeping of small eddies by large eddies, the summatio
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Eq. ~66! is limited to local triads withk;k8. Dimensionally,
gn;k2f̂k , which is an eddy turnover rate. Fork@1, k2gf

@gn , and Eq.~64! yields

k2gf5(
k8

4Ak8,k
2

@~k2k8!22k82#~k822k2!uf̂k8u
2

~k2k8!2gf9
,

~67!

with gn;gf /k2. This expression is subject to the same tri
restriction as that of Eq.~66!, and leads to a decorrelatio
rate that is also an eddy turnover rate.

IV. SPECTRAL LAWS

From the scalings of the spectrum equations, Eqs.~50!–
~51!, we can obtain inertial range power laws for the spec
energy densities. Following Obukov, we solve simp
asymptotic balances between scale-independent dissip
rates and the dominant spectral transfer rate of each equa
The dissipation rate is equal to an energy input rate crea
by external forcing at the outer scale. In accordance with
notion of spectral energy transfer that is local in wave nu
ber space we takek;k8. For vA , v̂A , gn , andgf we use
the values obtained in the preceding section, with
Alfvénic rates governed by magnetic fluctuations near
outer scalek0!k. Where equipartition is indicated by th
nonlinear eigenmodes, we assume that the dissipation ra
equal in the two equations whose energies are in equip
tion. The equipartition assumption is then verifieda poste-
riori from the balances, which must yield identical pow
laws for the two energy densities. To determine which te
dominates from the right hand side of each energy equat
we examine asymptotic limits fork→0 andk→`. A bal-
ance with any selected term establishes power law depen
cies for each energy, or equivalently, for each fluctuat
amplitude. These dependencies can be substituted into
remaining terms. Only if the remaining terms vanish in t
appropriate asymptotic limit, is the balance with the selec
term a dominant balance.

We begin with the long wavelength limit, and verify th
power laws previously predicted from a heuristic analy
like that of Sec. II.1 We consider first the magnetic equatio
Eq. ~50!, and note that withgn@gf , we must consider terms
that go ask6ĉ3f̂, k6ĉf̂3, k6ĉ3n̂, andk6ĉf̂2n̂. We ignore
the phase content of the correlations in Eq.~50! and deal
only with amplitudes. For the Alfve´nic eigenmode in the
long wavelength regime@Eqs. ~29!–~31!#, ĉ and f̂ have
equal amplitude, reducing the balances to two. The bala
involving ĉ andf̂ is dominant, as will be apparent oncen is
determined from the internal energy equation. Therefore

e5Ak8
2

,kk
2

uĉk8u
2^ĉk8f̂2k8&

vA9
'

kBk
3Vk

Bk0

, ~68!

where Bk0
5k0ĉk0

5VA . Under equipartition, Bk'Vk ,
yielding

EM~k!5
Bk

2

k
5

e1/2Bk0

1/2

k3/2 . ~69!
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In the kinetic energy equation we must confront the possi
ity of competition between spectral transfer rates gover
by the Alfvénic decorrelation~involving GAf and GA! and
those governed by the fluid straining decorrelation~involving
Gff andGc!. The former go asĉf̂3/v̂A , while the latter go
as k2f̂4/gn . For equipartition ofĉ and f̂ the ratio of the
former to the latter isgn /k2v̂A . For the dominant balance o
Eq. ~68!, gn /v̂A;(k/k0)21/4, and is small in an inertia
range. However,k22 can be very large for a spectrum who
outer scale is 12 orders of magnitude larger than the
gyroradius. Consequently, the Alfve´nic terms dominate,
leading to a balance

e5Ak8,k
2

@~k2k8!22k82#
~k822k2!

~k2k8!2

uf̂k8u
2^ĉk8f̂2k8&

vA9

'
kVk

3Bk

Bk0

, ~70!

and a spectrumEK(k)5EM(k). The equipartition of the
eigenmode is thus justified by the spectrum balances.
internal energy equation also has a competition between
Alfvénic and fluid straining decorrelation rates. Here ter
whose decorrelation is governed by the former have an e
factor of k2. Consequently the fluid straining terms dom
nate, leading to the balance

e I5Ak8,k
2 un̂k8u

2uf̂k8u
2

gn9
.

k2Vk
2nk

2

kVk
5kVknk

2. ~71!

The fluid straining terms with a single factor off̂ go as
k2n̂k

3/Vk , and are found to be subdominant when check
with the scaling of Eq.~71!. The balance of Eq.~71! is that
of a passive scalar. The spectrum is

EI~k!5
nk

2

k
5

e I

e1/4Bk0

1/4k7/4. ~72!

The density decays more steeply than the other two spe
Despite assertions to the contrary,19 a passive scalar has th
same spectral index as the advecting flow only for the spe
case of25/3.

We consider now the short wavelength regime, start
with the magnetic equation. From the preceding sectiongf

@gn in this limit. All denominators ofGAf andGAn go as
k2gf9 , making all terms small except the first of the term
proportional togf9 /v̂A in each ofGAf andGAn . These go as
ĉ3f̂/v̂A and ĉ3n̂/v̂A . The four terms ofGA also have one
or the other of these forms. The dominant term isĉ3n̂/v̂A

because fewer factors ofk are absorbed to convertĉk to Bk

and f̂k to Vk . The dominance can be verifieda posteriori

once ĉk , f̂k , and n̂k are determined. Appealing to th
Alfvénic eigenvector in the highk limit, we assume equipar
tition of n̂k andBk . Thus, from the dominant balance

e5Ak8
2

,kk
2

uĉku2^ĉk9n̂2k9&
vA9

'
k2Bk

3nk

Bk0

.
k2Bk

4

Bk0

, ~73!

the spectrum is
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EM~k!5
Bk

2

k
5

e1/2Bk0

1/2

k2 . ~74!

In passing from long to short wavelengths the magnetic sp
trum steepens fromk23/2 to k22. The assumption of equi
partition can be verified by calculating the spectrum ofn̂k

2

from the density equation. Repeating the arguments used
the magnetic equation, of the terms of Eq.~52! that decorre-
late on the Alfvénic time scale, those that go asĉ3n̂/v̂A are
largest. Of the terms that decorrelate on the fluid strain
time scale, the first terms ofGc andGf are the largest. With
its multiplicative factors, the former goes asA2k2f̂2ĉ2/g,
while the latter go asA2Vn̂2. OnceVk is determined these
terms will be found to be smaller thanA2k2ĉ3n̂/v̂A . Hence
the dominant balance is

e5Ak8
2

,kk
2

~k822k2!

~k2k8!2

uĉk8u
2^ĉk8n̂2k8&

v̂A9
. ~75!

Assuming the partition of the Alfve´nic eigenvectorkĉk

5n̂k , this balance yieldsEI(k)5EM(k), confirming the eq-
uipartition assumption. In Eq.~75!, the density enters in a
correlation withĉk . As with all cross correlations there is
phase angle. However, from the Alfve´nic eigenvector, the
cosine of the angle is unity. Turning to the kinetic ener
equation, we note that the terms inGAf , Gff , andGc with
a factor of (k822k2) or @(k2k8)22k82# are larger than the
other terms. These terms go asA2k2ĉ3f̂/v̂A , A2k2f̂4/gf ,
andA2k2f̂2ĉ2/gf . The second term dominates, yielding

eK5Ak8,k
2

@~k2k8!22k82#
~k822k2!

~k2k8!2

@f̂k8u
2ufk8u

2#

gf9

.kVk
3. ~76!

This is the balance of the Kolmogorov spectrum, from whi

EK~k!5
eK

2/3

k5/3. ~77!

Under this dependence, it is readily verified that the s
dominant terms are indeed smaller. There is clearly a d
matic change in the way in which kinetic energy is cascad
in the long and short wavelength limits. In the former it
cascaded principally through the Alfve´nic coupling, under-
going a continuous conversion and reconversion proc
with the magnetic energy. In the short wavelength regim
self-advection of flow dominates, and kinetic energy is tra
ferred between scales with negligible coupling to the m
netic field.

The spectral laws of the long wavelength regime ce
to hold at a critical wave number that is less than uni
Returning to the discussion immediately following Eq.~69!,
the Alfvénic and fluid straining terms in the kinetic energ
equation become equal whengn /k2v̂A51. Solving this ex-
pression fork yields the critical wave numberkcrit5L21/9,
whereL is the outer scale normalized to the ion gyroradiu
If the outer scale is 12 decades removed from the scale o
gyroradius, as in the ISM, the critical wave number iskcrit

51024/3. At this wave number fluid straining takes over
license or copyright; see http://pop.aip.org/about/rights_and_permissions
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the kinetic energy equation. Becausegn remains smaller than
gf the fluid straining term in the energy balance has an
ditional factor of k2 relative to the balance atk@1. This
produces a steep decay of kinetic energy withEK(k);k23.
Provided the fluid straining term of the internal energy eq
tion remains dominant, the internal energy decay levels
until the Alfvénic term becomes important. This behavi
allows the internal energy to become larger than the kin
energy. Once this happens, the magnetic energy drops m
sharply, allowing equipartition with the internal energy. T
physics of this transition subrange is clearly complicat
and many terms from Eqs.~50!–~52! potentially come into
play. Analysis of this subrange will be undertaken in a futu
publication. The wave number at which thek@1 spectral
laws begin to emerge depends on the details of the trans
subrange.

Given the complexities of the nonlinear inertial intera
tions probed in this paper, we have not included dissipa
in the analysis. Yet for applications such as interstellar t
bulence it is worth considering at what wave number dis
pation might occur relative to other features such as th
discussed above. Recently, Leamonet al. have inferred the
threshold wave number of the dissipation range in interpl
etary turbulence at one AU.20 The issue has its own com
plexities, particularly since the apparent isotropy of the d
sipation range strongly suggests kinetic processes, inclu
cyclotron resonance damping, ion and electron Lan
damping, and kinetic Alfve´n wave excitation. The onset o
the dissipation range is seen as a break in the spectral i
of the frequencyspectrum from a value21.67 to22.91. The
corresponding wave number is placed betweenk50.2 and
0.3. The critical wave number derived in the preceding pa
graph for the transition from Alfve´nic to fluid straining
decorrelation in the kinetic energy equation falls at a som
what lower wave number ofkcrit50.04. Consequently it is
possible that the inertial~nonlinear! kinetic Alfvén wave
physics presented in this paper enters the cascade befor
sipation. However, these critical wave numbers are su
ciently close that, given uncertainties, both processes ma
involved in the interstellar index of21.9, which after all, is
much less steep than the interplanetary index of22.9.
Clearly the role of dissipation in nonlinear interactions ne
the inner scale is an important issue for future considerat

The spectral indices derived above are meaningful o
if there is a sufficiently large spectral subrange in which
balances can become dominant. However, even in the
sence of such a subrange, the asymptotic balances ind
which interactions tend to dominate, and the approxim
outcome in terms of energy partitions. The analysis assu
appropriate forcing in all three equations, but it can be u
to infer what happens when a single field is forced, as is d
in the simulations described in the next section. For exam
if the magnetic fluctuation is the only field that is externa
forced, it can be expected that the field to which it coup
Alfvénically will be nonlinearly excited, and its energy wi
be brought into equipartition with the magnetic energy. Th
in the long wavelength regime, the kinetic energy will
forced into an equipartition with the magnetic energy. Wi
out external forcing or an advective source from an equi
Downloaded 28 Oct 2011 to 128.104.165.246. Redistribution subject to AIP 
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rium gradient, the density will be excited only through th
Alfvénic coupling ofGAn . This coupling is weak fork!1,
while the turbulent advection, which depletes internal ene
by cascading it to dissipated scales, is strong. Conseque
the internal energy will be small compared to the magne
and kinetic energies. In the short wavelength regime
roles of kinetic and internal energy reverse. The Alfve´nic
coupling ofn andB throughGAn andGA now dominates the
advection of density, and the internal energy is nonlinea
excited to equipartition with the magnetic field. For kinet
energy the Alfve´nic coupling throughGAf and GA is now
weaker than self-advection, which acts to deplete kinetic
ergy by cascading it to dissipated scales. Hence, the kin
energy falls to a level that is below that of magnetic a
internal energies. The decoupling of kinetic energy and
strong interaction of magnetic field and density through
netic Alfvén disturbances, is precisely the situation describ
by the CEMT model of earlier studies.16,21

V. NUMERICAL ILLUSTRATIONS

The general behavior described in the preceding sect
is evident from numerical results using a spectral code
solve the basic dynamical equations. The same code
used in Ref. 7 to measure the turbulent response, or cha
teristic decorrelation rates, associated with nonlinearities
the model. Details of the code are given in that referen
From those studies, the basic energy balances of the
wavelength regime, Eqs.~68!, ~70!, and ~71!, were verified
numerically. The simulations did not have sufficient spat
resolution to measure spectral indices. Even in high res
tion simulations it is difficult to distinguish between the in
dices that differ only slightly, e.g.,k23/2 vs k25/3. However,
from large ensembles tracking the temporal response to
turbations, it was possible to clearly distinguish the flu
straining rate in the denominator of Eq.~71! from the
Alfvénic rates in the denominators of Eqs.~68! and ~70!.
These methods established that the Alfve´nic and fluid strain-
ing decorrelation rates are given, to good accuracy, by E
~61! and ~66!, and that the characteristic frequencies of
sponses are based on the decorrelation rates accordin
Eqs.~27! and~28!. Moreover, these studies verified the stru
ture of the response function eigenvectors, Eqs.~29!–~34!.

Here we examine the energy transfer dynamics and
titions that characterize long and short wavelength limits
illustrations of the physics presented in earlier sections
the numerical solutions the magnetic field was the only fl
tuation with forcing, creating the situation described at t
end of the preceding section where the kinetic and inter
energies are excited solely by coupling across fields. T
forcing was accomplished through a linear instability dri
introduced into the magnetic energy equation. Unsta
modes were typically restricted to a single wave numbe
long wavelength. Hyper dissipative damping was used in
three fields to dissipate energy at the smallest scales.
solutions were run until the instability was saturated by no
linear spectral transfer, and a steady state was reached
this point an energy transfer diagnostic was turned on. T
energy transfer diagnostic records the rate of energy tran
license or copyright; see http://pop.aip.org/about/rights_and_permissions
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2719Phys. Plasmas, Vol. 8, No. 6, June 2001 The role of electron density in magnetic turbulence
into and out of annular bands in the two-dimensional sp
of kx andky for the three forms of energy~magnetic, kinetic,
and internal!. The procedure was repeated for spectral ran
lying entirely within long and short wavelength subranges
in the transition region between the subranges. The samp
of these subranges was varied continuously with the par
etera defined from the normalization used in Ref. 12 for t
basic model equations. The parametera is the wave number
squared of the longest wavelength mode normalized to
ion gyroradius squared. Fora51025, the smallest value
used in the computations, all modes were well within t
long wavelength subrange. Fora50.1, the longest wave
length modes were marginally in the long wavelength
gime, while shorter wavelength modes hadk.1. For a51
the entire spectrum hadk.1.

Figure 2 shows the energy transferred from the magn
equation, broken down into the percentage transferred to
kinetic and internal energy equations, as a function ofa.
Below a51023 nearly all of the energy transferred by th
magnetic energy equation passes to the kinetic energy e
tion. This indicates that magnetic energy cannot pass f
one scale to another without being converted to another f

FIG. 2. Percent of energy transfer from the magnetic equation goin
fluctuations of flow~circles! and density~squares! as a function ofa. The
parametera sweeps wavelength regimes, witha!1 representing a spec
trum in the long wavelength regime anda51 representing a short wave
length spectrum.

FIG. 3. Wave number spectrum for turbulence in which all scales lie in
long wavelength regime (a51025). The system is forced by a linear insta
bility in the magnetic equation withk55. Internal energy is much smalle
than magnetic and kinetic energies, which are equipartitioned.
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of energy. The favored form is kinetic energy, in accordan
with the Alfvénic interaction at long wavelengths. Aroun
a50.01 there is the beginning of significant energy trans
to the internal energy equation; atk51, nearly all of the
energy is transferred to the internal energy equation and
most none is transferred to the kinetic energy equation. T
figure clearly shows how the kinetic and internal energ
reverse roles in going from long to short wavelengths,
predicted from the results of the spectrum analysis. Figu
3–5 show steady state spectra for three values ofa corre-
sponding to regimes with long, short, and intermediate wa
lengths. In Fig. 3a51025, and there is an equipartition o
magnetic and kinetic energies away from the unstable m
netic mode atk55. The internal energy is orders of magn
tude lower for all wave numbers. In contrast, Fig. 4 sho
the situation fora51 where the magnetic and internal ene
gies reach equipartition abovek55. The kinetic energy is
two orders of magnitude smaller. Figure 5 shows the int
mediate case ofa50.01. The spectrum is clearly in a tran
sition subrange, and all three fields are in rough equipa
tion. These results clearly illustrate the behavior predicted
the prior sections: in the long wavelength regime the m
netic field and flow strongly couple through the Alfve´nic
interaction, and density is a passive advectant; in the s
wavelength regime the magnetic field and density stron

to

e

FIG. 4. Wave number spectrum for turbulence in which all scales lie in
short wavelength regime (a51). Kinetic energy is much smaller than mag
netic and internal energies, which are equipartitioned.

FIG. 5. Wave number spectrum for turbulence in an intermediate reg
between long and short wavelengths (a50.01). All three energies are com
parable.
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interact through the kinetic Alfve´n wave, and flow become
decoupled. The numerical results have not verified the va
derived for spectral indices, but they have verified the ph
ics and balances that uniquely lead to those values.

VI. CONCLUSIONS

We have considered here anisotropic magnetic tur
lence in a model that reproduces in the long wavelength li
the salient features of turbulence in the warm diffuse ioniz
component of the interstellar medium. As the wavelen
approaches the ion gyroradius the electron density goes
passive to active. To understand the dynamics associ
with the coupling of electron density fluctuations to magne
turbulence we have investigated both long and short wa
length regimes. While the asymptotic short wavelength
gime is below the inner scale of the observed spectrum
interstellar turbulence, the physics of an active density
expected to play a role near the inner scale. We caution
other effects not considered here, such as dissipation,
enter at these scales, affecting the direct applicability of
present results to interstellar turbulence. The model is ba
on reduced MHD with electron density fluctuations incorp
rated through the electron pressure in Ohm’s law and par
compression of electron density in the electron continu
equation. We have taken the limit of strong anisotropy,
which the wave number along the local magnetic field
negligible.

On the basis of a systematic statistical closure of
energy evolution equations, we find that even for strong
isotropy, Alfvénic decorrelationalonemediates energy trans
fer in the equation for the magnetic field. Alfve´nic interac-
tions couple magnetic field to the flow at long waveleng
and magnetic field to density at short wavelengths. The c
pling, which drives equipartition between the coupled fiel
decorrelates on the Alfve´n time scale. The fluid straining
decorrelation, or eddy turnover rate, affects only the casc
of internal energy at long wavelengths, and the cascad
kinetic energy at short wavelengths. The spectra associ
with these processes have distinct features in the two
gimes. For long wavelengths the spectral indices are23/2
for magnetic and kinetic energy, and27/4 for internal en-
ergy. For short wavelengths the spectral indices are22 for
magnetic and internal energy, and25/3 for kinetic energy.
The critical wave number at which the long waveleng
spectra cease to hold iskcrit5L21/9, where L is the outer
scale.

The statistical closure theory sorts out competing dec
relation processes whose relative importance and eff
change over the spectrum. In general, Alfve´nic and fluid
straining interactions decorrelate on their respective t
scales only, with the interactions competing to govern
spectral transfer rate. To accurately capture the physics
closure must properly account for the nonlocal~in wave
number space! Alfvénic interactions and their off-diagona
coupling character. The expression provided by the clos
for the Alfvénic decorrelation rate shows that it is truly
decorrelation, despite an underlying motion consisting
propagating waves. The expression also reveals its nonl
Downloaded 28 Oct 2011 to 128.104.165.246. Redistribution subject to AIP 
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character, and the necessity of oppositely propagating dis
bances. Magnetic energy is seen to cascade from one sca
another through conversion to kinetic or internal energy a
reconversion back to magnetic energy. This process is g
erned by the cross correlations^ĉf̂& and^ĉn̂&. The relative
phase of these correlations is set by the nonlocal Alfve´nic
interaction, which has the character of a shear Alfve´n wave
in the long wavelength regime, and a kinetic Alfve´n wave in
the short wavelength regime. Fluid straining interactions
seen to govern the cascade of internal energy at long w
lengths, and kinetic energy at short wavelengths. The clos
equations also contain a complicated transition region aro
k51. The rich and complicated interplay between Alfve´nic
and fluid straining processes revealed by consideration
spectrum containing both long and short wavelength lim
dispels the overly simple notion that a single decorrelat
rate applies to all interactions. Moreover, the energy partit
structure directly reflects the role of Alfve´nic versus fluid
straining motions in the nonlinear energy transfer. This s
gests that the observed Alfve´nic equipartition of flow and
magnetic field fluctuations in simulations is incompatib
with a decorrelation that is not Alfve´nic.

This study indicates that the spectral laws of the lo
wavelength subrange do not extend all the way tok51.
Thus, provided dissipation does not cut off the spectrum
interstellar turbulence at the inner scale, the smallest sc
likely reflect a transition to the regime of active densit
Because there is a transition subrange before the short w
length spectral laws come into play, it is not clear if th
measured index of21.9 for angular broadening of extraga
lactic radio sources reflects the short wavelength index
other physical processes such as dissipation. A magnetic
ergy spectrum that is steeper than the MHD result ofk23/2 is
observed in MST, which also makes the steeper spectrum
k22 derived herein appealing. However, in laboratory pla
mas the spectrum is limited in extent, covering only a fe
decades. In this situation the gradient of mean density p
a greater role than that likely for interstellar turbulenc
Therefore, consideration of the role of the diamagnetic f
quencyv* should be undertaken for more detailed compa
son with MST.
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